Macrophage Foam Cell–Derived Extracellular Vesicles Promote Vascular Smooth Muscle Cell Migration and Adhesion
نویسندگان
چکیده
BACKGROUND A new mechanism for intercellular communication has recently emerged that involves intercellular transfer of extracellular vesicles (EVs). Several studies have indicated that EVs may play a potential role in cell-to-cell communication between macrophage foam cells and vascular smooth muscle cells (VSMCs) in atherosclerotic lesion. METHODS AND RESULTS This study involved the comparison of circulating EVs from atherosclerotic patients and control participants. The results showed that the circulation of the patients contained more leukocyte-derived EVs and that these EVs promoted more VSMC adhesion and migration than those of healthy participants. We then established a macrophage foam cell model and characterized the EVs from the macrophages. We used flow cytometric analyses and cell migration and adhesion assays and determined that the foam cells generated more EVs than the normal macrophages and that the foam cell-derived EVs were capable of promoting increased levels of VSMC migration and adhesion. Furthermore, we performed a proteomic analysis of the EVs. The data showed that the foam cell-derived EVs may promote VSMC adhesion and migration by regulating the actin cytoskeleton and focal adhesion pathways. In addition, Western blotting revealed that foam cell-derived EVs could promote the phosphorylation of ERK and Akt in VSMCs in a time-dependent manner. We also found that foam cell-derived EVs could enter the VSMCs and transfer integrins to the surface of these cells. CONCLUSIONS The data in our present study provide the first evidence that EVs from foam cells could promote VSMC migration and adhesion, which may be mediated by the integration of EVs into VSMCs and the subsequent downstream activation of ERK and Akt.
منابع مشابه
Vasoprotective Effects of Urocortin 1 against Atherosclerosis In Vitro and In Vivo
AIM Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide indu...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملPlatelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype
Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to ...
متن کاملFibrous cap formation or destruction--the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation.
Endothelial activation and infiltration of monocyte macrophages are essential prerequisites for fibrous cap formation, which comprises proliferation and migration of smooth muscle cells and net matrix deposition. Macrophage foam cells and endothelium act as a source of growth factors and chemoattractants for smooth muscle cells. However, growth factors alone do not stimulate smooth muscle cell ...
متن کاملAdipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.
BACKGROUND Vascular smooth muscle cell proliferation plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the human injured artery and suppressed endothelial inflammatory response as well as macrophage-to-foam cell transformation. The present study investigated the effects of adiponectin on p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016